Posted in: Blog posts

This post presents some preliminary simulation results of the Model Predictive Control (MPC) implementation of the Infrax office building. This building consists of four floors, each containing multiple zones that are simulated individually. The ventilation of is controlled individually per zone, while the concrete core activation is controlled individually per floor. The heat and cold production devices are also controlled by the MPC, but these are not discussed in detail here. The MPC is configured to minimize the electrical power use [kWh] while maintaining the zone temperatures between 22 and 24 degrees.

Read more

Posted in: Blog posts

I am Qian Wang, I joined the hybridGEOTABS project in February 2016 as a research specialist at Uponor after my PhD in KTH Royal Institute of Technology. My research focuses on Low-temperature heating and High-temperature cooling technology. In current hybridgeotabs project, I am exploring the business model development in different European countries, as an approach for promoting the MPC GEOTABS for different buildings typologies. The approach assesses the strategies from both technical and business perspectives for future large-scale implementation and optimal design/installation of hybridGEOTABS system. One of the aims of the hybridGEOTABS project is to design an innovative Energy Dashboard (ED) and implement a prototype in a cloud-based loT (Internet of Things) platform for GEOTABS. The Energy Dashboard incorporates measurement and sensor data from the individual modules, algorithms for performance evaluation, monitoring and diagnostics, and a user interface for providing the information to user segments. The prototype dashboard will be developed on an existing commercially available IoT platform that can be easily commercialized and adapted in the future for other building applications and communication applications. The approach starts by identifying the end users/customer segments of the Energy Dashboard. Three key segments were identified: residents, energy managers and public owners.  The approach was initiated by an innovative method that engaging the users and crowd the co-creation process, namely open innovation. The co-creation process comprises certain strategies, such as gamifications, voting and crowd reaching, in order to get maximum feedbacks and fulfil the gaps between market needs and current Energy Dashboard solutions. Some key outputs of this process were presented in the images above. Another part that we are exploring involves investigating the conceptual framework and generation of business models for MPC GEOTABS technology. The investigations are done by compiling technical, political, economic, social and environmental analytical frameworks of MPC Geo-TABS [1]. The key elements of the business model Canvas are identified and analyzed in this application. Theoretical bases of business model generation are verified by substantiating arguments and potential profit analysis for stakeholders via four demonstration buildings. The focused building types/cases involve office building, schools, elder-care houses and multi-family house. Methods to verify the proposed value propositions in the business model are given special interests. The pilot results provide an early-stage guidance and added value for the future large-scale commercialisation in EU building market.  

Read more

Posted in: Blog posts

I am Rana Mahmoud, I joined the hybridGEOTABS project in December 2016 as a PhD researcher at Ghent University. My research focuses on studying the building stock in different European countries, as an approach for analysing the energy demand for the different buildings typologies to assess the feasibility of achieving an optimal sizing for the hybridGEOTABS system. One of the aims of the hybridGEOTABS project is to design a low-cost and efficient energy system, through facilitating the predesign phase for engineers and architects to reduce time and costs for simulating case by case project. An easy-to-use procedure will be proposed based on different typologies classifications with different energy requirements that would help designers on choosing the right sizing of the system according to these classifications. The research question is how to simulate in an automated process vast amount of building stock data to obtain load duration curves that will guide the optimal sizing of the GEOTABS system components for the different building typologies.

Read more

Posted in: Blog posts

Over the last few months, GEOTER has been working on selecting the most suitable way to monitor underground temperature and the communication and connection systems as part of WP4: Concept and Impact Validation. It will enable us to know, with time, the evolution of the geothermal resources, according to the demand of the buildings. In this context, GEOTER have developed the Enhanced Geothermal Response Test (EGRT) based on usage of a new equipment setup for the realisation of an on-site thermal conductivity test and continuous monitoring of the geothermal probes. It will provide us with geothermal field sizing optimisation and provide us the necessary data oriented to the MPC controller to decide the thermal management of the buildings.

Read more

Posted in: Blog posts

Ongun and Nico complete their road trip installing sensors at Ter Potterie, Bruges...

Read more

Posted in: Blog posts

Now in the Czech Republic, Ongun and Nico continue with their work installing sensors within the Elementary School...

Read more